A Robust Zero-point Attraction LMS Algorithm on Near Sparse System Identification
نویسندگان
چکیده
The newly proposed l1 norm constraint zero-point attraction Least Mean Square algorithm (ZA-LMS) demonstrates excellent performance on exact sparse system identification. However, ZA-LMS has less advantage against standard LMS when the system is near sparse. Thus, in this paper, firstly the near sparse system modeling by Generalized Gaussian Distribution is recommended, where the sparsity is defined accordingly. Secondly, two modifications to the ZA-LMS algorithm have been made. The l1 norm penalty is replaced by a partial l1 norm in the cost function, enhancing robustness without increasing the computational complexity. Moreover, the zero-point attraction item is weighted by the magnitude of estimation error which adjusts the zero-point attraction force dynamically. By combining the two improvements, Dynamic Windowing ZA-LMS (DWZA-LMS) algorithm is further proposed, which shows better performance on near sparse system identification. In addition, the mean square performance of DWZA-LMS algorithm is analyzed. Finally, computer simulations demonstrate the effectiveness of the proposed algorithm and verify the result of theoretical analysis.
منابع مشابه
A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
A soft parameter function penalized normalized maximum correntropy criterion (SPF-NMCC) algorithm is proposed for sparse system identification. The proposed SPF-NMCC algorithm is derived on the basis of the normalized adaptive filter theory, the maximum correntropy criterion (MCC) algorithm and zero-attracting techniques. A soft parameter function is incorporated into the cost function of the t...
متن کاملSparse LMS/F algorithms with application to adaptive system identification
Standard least mean square/fourth (LMS/F) is a classical adaptive algorithm that combined the advantages of both least mean square (LMS) and least mean fourth (LMF). The advantage of LMS is fast convergence speed while its shortcoming is suboptimal solution in low signal-to-noise ratio (SNR) environment. On the contrary, the advantage of LMF algorithm is robust in low SNR while its drawback is ...
متن کاملA General Zero Attraction Proportionate Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
A general zero attraction (GZA) proportionate normalized maximum correntropy criterion (GZA-PNMCC) algorithm is devised and presented on the basis of the proportionate-type adaptive filter techniques and zero attracting theory to highly improve the sparse system estimation behavior of the classical MCC algorithm within the framework of the sparse system identifications. The newly-developed GZA-...
متن کاملGradient optimization p-norm-like constraint LMS algorithm for sparse system estimation
In order to improve the sparsity exploitation performance of norm constraint least mean square (LMS) algorithms, a novel adaptive algorithm is proposed by introducing a variable p-norm-like constraint into the cost function of the LMS algorithm, which exerts a zero attraction to the weight updating iterations. The parameter p of the p-norm-like constraint is adjusted iteratively along the negat...
متن کاملl0 Norm Constraint LMS Algorithm for Sparse System Identification
In order to improve the performance of Least Mean Square (LMS) based system identification of sparse systems, a new adaptive algorithm is proposed which utilizes the sparsity property of such systems. A general approximating approach on l0 norm – a typical metric of system sparsity, is proposed and integrated into the cost function of the LMS algorithm. This integration is equivalent to add a z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.2255 شماره
صفحات -
تاریخ انتشار 2013